Skip to content

AI für Embedded Systeme [DE]

 – , Online

In diesem praxisorientierten Kurs erfahren Sie, wie Sie Machine- und Deep-Learning-Modelle effizient auf Embedded Systems implementieren. Trotz der begrenzten Ressourcen solcher Systeme lernen Sie, wie Sie stabile und leistungsfähige Lösungen entwickeln können.

Early Bird
Valid Until 2025-01-17
€ 1.450,00
Standard
€ 1.590,00

Request personalized quote For all prices: Vat is not included


Time Location Talk Language Registration deadline
09:00 - 17:00 Online German
Places are still available

The contents of the course

Wir zeigen Ihnen, wie Sie ein Embedded System bewerten und evaluieren, um seine Eignung für die Ausführung eines bestimmten Modells sicherzustellen.

Darüber hinaus werden Ihnen die wichtigsten Tools und Methoden vorgestellt, die bei der Integration von Modellen auf Embedded Systems zum Einsatz kommen. Sie lernen, worauf Sie besonders achten müssen, insbesondere in Bezug auf Software-Kompatibilität, Entwicklungsaufwand, Performance, Wartbarkeit und Robustheit.

Um höchste Performance und Effizienz zu erreichen, vermitteln wir Ihnen fortgeschrittene Techniken zur Optimierung von Machine- und Deep-Learning-Modellen. Abschließend führen wir Sie in den Aufbau eines durchgängigen und hochwertigen Entwicklungsworkflows (MLOps) ein, der Ihnen den Erfolg in Ihren Projekten garantiert.

Inhalt

  • Einführung in Machine Learning, Deep Learning und Künstliche Intelligenz
    • Überblick und Unterschiede der Begriffe
    • Abgrenzung und Einsatzgebiete
  • State-of-the-Art Modelle und Architekturen
    • Überblick über aktuelle Modelle für Zeitreihen- und Bilddatenverarbeitung (Time Series Processing und Computer Vision)
    • Praxisbeispiele für verschiedene Anwendungsfelder
    • Verweise auf weiterführende Kurse in spezifischen Bereichen
  • Systembewertung und Architektur für Embedded AI
    • Kriterien zur Bewertung und Auswahl von Embedded Systems für den Einsatz von KI
    • Wichtige Metriken zur Systembewertung und Methoden zu deren Ermittlung
    • Überblick über Leistungsklassen und Hardware-Architekturen von Embedded Systems und deren Einsatzmöglichkeiten für KI
  • Entwicklung und Deployment von KI-Modellen auf Embedded Systems
    • Verfügbare Frameworks und Tools zur Modellintegration
    • Best Practices für Entwicklung, Wartung, Performance-Optimierung und Kompatibilität
  • Optimierungsverfahren für KI-Modelle
    • Techniken zur Steigerung der Performance und Effizienz von Machine- und Deep-Learning-Modellen auf Embedded Systems
  • MLOps für Embedded AI
    • Einführung in Tools und Prozesse für einen durchgängigen Entwicklungsworkflow
    • Integration des KI-Entwicklungsprozesses mit dem Embedded-System-Workflow
    • Gestaltung eines minimalen und effizienten MLOps-Workflows für Embedded KI-Anwendungen

Dauer

2 Tage

Zielgruppe

  • Embedded-Software-Entwickler
  • Softwarearchitekten
  • Entwicklungsleiter
  • CTOs/CIOs

Voraussetzungen

  • Grundlegende Kenntnisse über den Aufbau und die Funktionsweise von Embedded Systems
  • Grundlegende Kenntnisse im Bereich Machine Learning
  • Grundladen in Hard- & Software Systemen

Dieses Seminar wird von Software Quality Lab Academy organisiert und von unserem Partner Danube Dynamics durchgeführt.

Please contact us if you are interested in this topic.

Additional information to our in-house seminars

Do you have any questions or are you interested in this or other seminars?

Would you like to book this seminar as an in-house seminar?

Contact us:

Additional information